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ABSTRACT
The task of temporal action detection aims to locate and
classify action segments in untrimmed videos. Most exist-
ing works usually consist of two components: snippet-level
boundary segmentation and anchor-level action evaluation.
These two components, however, are typically designed ir-
relevantly, so the detection accuracy is undermined due to
vague boundaries and complex video content. To tackle this
problem, we design two supplementary modules. One mod-
ule, termed as Anchor Aware Module (AAM), uses tem-
poral and semantic related anchors to enhance snippet fea-
ture. The other module, named Boundary Aware Module
(BAM), endows anchor feature with structured representa-
tion using intermediate supervision. Moreover, the ConvL-
STM is applied to establish temporal relation in BAM with
the structured representation. These two modules are in-
tegrated as the Boundary-Anchor Complementary Network
(BACNet), which achieves the state-of-the-art performance
on both THUMOS-14 and ActivityNet-1.3 datasets.

Index Terms— Video Understanding, Temporal Action
Detection, Complementary Network

1. INTRODUCTION

Temporal Action Detection (TAD) is a fundamental task in
video understanding, which aims to locate the action bound-
aries and classify the action segments in untrimmed video.
Most existing methods contain two branches: a boundary
segmentation branch, designed for boundary location with
snippet-level feature; an action evaluation branch, designed
for confidence evaluation with anchor-level feature. However,
the interaction between these two branches is usually ignored,
which brings two drawbacks: (1) Confused boundary proba-
bility; (2) Inaccurate anchor confidence.

In terms of boundary segmentation branch, each snippet
is classified as start or end with certain probabilities to locate
the boundaries in a video. But, boundaries of some actions
are too vague to tell from only surrounding snippets, which
will inhibit boundary location. As shown in Fig.1(a), con-
sidering the similarity between snippets in the start period of
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Challenge from similarity of snippet features on locating start time
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(a) Confusing start time in the start period.
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…

Background Normal action Playback
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…

Background feature Action feature End featureStart feature

(b) Similar anchor content without structured representation.

Fig. 1. (a) In the start region, only based on the similar lo-
cal features, model cannot accurately identify the start time.
(b) The dotted box (anchor 1) contains complete Long Jump
action with reasonable structure (start region, action region
and end region) and the solid box (anchor 2) represents an il-
logical action with disordered structure. However, they have
similar content when ignoring the structured information.

Long Jump, it is difficult to distinguish which snippet is the
real start. If the model can see the whole Long Jump action,
boundary location might be easier. In order to alleviate this
problem, traditional convolution [1, 2], graph convolution [3]
and self-attention [4, 5] are used to expand the snippet hori-
zons. However, these methods still focus on snippet-level fea-
ture for contextual relation construction, ignoring the segment
context between boundaries. Thus, inadequate snippet feature
will produce inaccurate boundary probabilities.

In terms of action evaluation branch, it is used to estimate
the confidence of each anchor. The anchor is composed of
several snippets to represent a video segment. Most meth-
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ods [1, 6] sample features within the anchor uniformly, which
make anchor representation lack boundary information and
temporal relation. Taking the sports video in Fig.1(b) as an
example, anchor 1 represents a real action with rational tem-
poral relation (start region, action region and end region). An-
chor 2 represents an illogical action with disordered temporal
relation (action region and end region from normal action,
but start region from the playback), which has similar content
with anchor 1. If the model could not establish the structured
representation in anchors, it leads to similar high confidence
scores for both anchor 1 and anchor 2.

Based upon the problems above, we propose a novel
network named Boundary-Anchor Complementary Network,
which consists of two crucial modules. (1) In order to enable
anchor feature to integrate structured representation, Bound-
ary Aware Module (BAM) is designed. We contend that
the features of different regions inside an anchor have dif-
ferent meanings (i.e., start feature, action feature, end fea-
ture), which are defined as structured features. As a result
of it, to emphasize the boundary information in an anchor,
BAM applies boundary supervision to construct the structured
features. Furthermore, for reasonable anchor representation,
ConvLSTM is used to establish the multi-level temporal re-
lations among structured features. (2) In order to expand the
receptive field of boundary snippet, Anchor Aware Module
(AAM) is proposed. AAM builds temporal and semantic rela-
tions between snippets and anchors, which provides boundary
with not only local features nearby boundary but also segment
contexts between boundaries. In summary, our work has the
following contributions:

1. To our knowledge, this is the first work attempting
to build the complementary relation between bound-
ary segmentation and action evaluation. We exploit the
complementary information between each other to en-
hance the feature within a TAD framework.

2. We introduce two novel modules. Boundary Aware
Module establishes the structured feature representa-
tion of anchors. Anchor Aware Module models tem-
poral and semantic related anchor contexts, which are
applied to enhance the boundary feature.

3. Boundary-Anchor Complementary Network obtains
superior performance on two popular datasets, i.e.,
THUMOS-14 and ActivityNet-1.3.

2. RELATED WORK

Temporal Action Detection. (1) Top-down method: top-
down method defines anchors on the video or feature pyra-
mid sequence to produce proposals. Most works [7, 8, 9]
use anchor-level feature to predict the confidence score of
each anchor. (2) Bottom-up method: bottom-up method
[10, 11, 12] predicts the start score, end score, and action-
ness score of snippets, which can be combined to generate
action proposals. (3) Combined method: combined method
[1, 2, 13] integrates these two methods for better performance.

These works predict boundaries and anchor confidences sep-
arately, which do not consider the interaction between each
part. In contrast, an intermediate bridge considering these
two parts as a whole, is built in this paper.
Feature representation. (1) To enrich the snippet feature,
many works contribute to expanding the receptive field of
snippets or enriching context with other snippets. In [3], it
is believed that adjacent snippets and semantically similar
snippets provide context properties and aggregates snippet-
level features with graph convolution network. TCANet [14]
encodes the local and global context features with a chan-
nel grouping strategy. However, these works merely con-
centrate on local features, lacking segment contexts. (2) To
enhance the representation of anchors, some works establish
relations between different anchors. PGCN [15] establishes
graph structure between proposals. ContextLoc [16] designs a
multi-level feature model, which explores query-and-retrieval
process to enrich local and global context simultaneously.
However, these models still depend on proposals generated
by other methods. They enrich the proposal features while
not paying attention to feature representation within the pro-
posal. In this work, we address the challenges by building two
complementary modules to let snippet feature has segment
contexts and anchor feature has structured representation.

3. METHOD

3.1. Overview

Problem Definition. The untrimmed video is composed of
lf frames. Every σ frames are regarded as a snippet. And
then, the video can be divided into T snippets with stride d,
where d is defined as distance between snippet centers. Video
snippets are encoded into feature sequence Fin ∈ RC′×T via
action recognition methods, whereC ′ is the dimension of fea-
ture. The annotations of untrimmed video are action instances
{ψi|ψi = (ti,s, ti,e, ci)}, where ti,s, ti,e and ci are start time,
end time and action category, respectively.
Network Architecture. The architecture of BACNet is
shown in Fig. 2. BACNet is mainly composed of four mod-
ules: Boundary Aware Module (BAM), Anchor Aware Mod-
ule (AAM), Boundary Segmentation Module (BSM) and Ac-
tion Evaluation Module (AEM). The design of BSM and
AEM follows the prior work[1].

Firstly, the video feature sequence Fin is fed into a basic
block stacked by two 1D convolution layers, which is used to
produce base feature F ∈ RC×T . Next, the base feature F
is simultaneously fed into BSM and BAM. BSM is applied
to generate start/end features Fs, Fe ∈ RC×T and start/end
probabilities Ps = {pis}Ti=1, Pe = {pie}Ti=1 by 1D convolu-
tion. BAM aims to generate 2D anchor representation map
FA = {f c,j,iA } ∈ RC×D×T with continuous start time and
temporal duration. f c,j,iA represents the anchor feature with
the start time i and duration j, and D is predefined maxi-
mum anchor duration. After generating 2D anchor represen-
tation map, AEM is used to produce two confidence maps
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Fig. 2. Overview of our BACNet. We extract the feature from untrimmed video and re-scale it to a fixed length. BSM and
AEM are used to generate boundary probabilities for each snippet and evaluate anchor confidence respectively. The BAM and
AAM are adopted to exchange information between BSM and AEM. Finally, we use the boundary probabilities and anchor
confidence maps to generate proposals.

Mcls ∈ RD×T ,Mreg ∈ RD×T by 2D convolution. Finally,
to refine boundary representation in BSM, AAM is designed
to construct enhanced start/end features F̂s ∈ RC×T and
F̂e ∈ RC×T . BAM and AAM will be detailed later.

3.2. Boundary Aware Module
To get a reliable confidence map, the representation of an-
chors must be more discriminating. Boundary Aware Module
establishes structured anchor representation, which contains
two vital stages: structured feature construction and the struc-
tured feature utilization.
Structured feature construction. BAM adopts Boundary-
Matching Layer [1] to generate the original anchor feature
map FM ∈ RC×N×D×T . Video segments with arbitrary
length could be represented by an anchor in the map. The an-
chor feature denoted as f j,iM ∈ RC×N is uniformly sampled
from start ti to end ti+j , where N is the sampling number.

To construct structured feature FR ∈ RC×R×D×T , BAM
conducts 3D convolution layer to reduce f j,iM dimension
length from N to R, which can be regarded as R regions. Next,
to highlight boundary information in f j,iR ∈ RC×R, the first
and last region features are fed into a 1D convolution layer to
generate anchor boundary probabilities Ps,map, Pe,map.
Structured feature utilization. For final anchor representa-
tion FA, recent works aggregate snippet features with pooling
[16] or convolution operation [1], which treat different snip-
pet features equally without temporal relation. Obviously,
multi-level temporal relations exist in FR. Intra relation: the
features inside f j,iM have temporal order. Inter relation: in a
macro view, each anchor in the FR has similar content with

its neighbors, which are locally related. For example, an an-
chor from start ti to end tj contains similar content with its
neighbour anchor, which is from start ti−1 to end tj .

In order to handle these two relations simultaneously,
ConvLSTM [17] is applied on FR to get a stronger anchor
representation map FA, as formulated in Eq. 1, where ‘·||·’
is concatenate operation, ‘◦’ is the Hadamard product, ‘∗’ is
the convolution operator, ‘W ’ and ‘b’ are learnable parame-
ters. ‘IG’, ‘FG’, ‘OG’, ‘CG’ denote input gate, forget gate,
output gate and cell gate, respectively. f tR ∈ RC×D×T repre-
sents the t-th region feature in anchors. ‘Ht’ is hidden state
whose shape is the same as f tR. FA is the last output of Ht.

IGt = Relu(Winput ∗ (f t
R||Ht−1) + binput)

FGt = Relu(Wforget ∗ (f t
R||Ht−1) + bforget)

OGt = Relu(Woutput ∗ (f t
R||Ht−1) + boutput)

CGt = Tanh(Wcell ∗ (f t
R||Ht−1) + bcell)

Cellt = (FGt ◦ Cellt−1) + (IGt ◦ CGt)

Ht = OGt ◦ Tanh(Cellt)

(1)

3.3. Anchor Aware Module
As discussed before, taking into account segment features can
provide supportive cues to discriminate boundaries. Anchor
Aware Module is designed to fully exploit temporal and se-
mantic relations between boundary features and anchor fea-
tures. The structure of AAM is illustrated in Fig. 2, which is
composed of Temporal Relation Module (TRM) and Seman-
tic Relation Module (SRM).
TRM. TRM is used to expand boundary horizons with tem-
poral related anchors. As shown in Fig. 2, red anchors con-
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Fig. 3. Illustration of SRM. This module constructs the se-
mantic relation between boundary snippets and valid area in
anchor map.

taining segment information have the same start time ti with
the dark blue snippet, which may help start classification at
time ti. In order to grasp the salient segment feature, TRM
takes MaxPooling among the anchors with the same start time
at each moment, which generates temporal related feature
Fs,tem ∈ RC×T . As for Fe,tem ∈ RC×T , TRM takes Max-
Pooling among the anchors, which have the same end time.
SRM. In addition to temporal related anchors, anchors that
are semantic related to boundary features will also help
boundary segmentation. Inspired by [18], SRM models se-
mantic relation between FA and Fs, Fe. Taking the Fs in
Fig. 3 as an example, SRM uses 1D convolution to transform
Fs to the query Fs,query ∈ RC×T , and the valid area (left
upper triangular matrix) of FA to key FA,key ∈ RC×(D×T/2)

and value FA,value ∈ RC×(D×T/2). Furthermore, SRM es-
tablishes a weight map Asimilar ∈ RT×(D×T/2) between
FA,key and Fs,query to retrieve the related value FA,value.
The Asimilar is calculated as:

Asimilar = fnorm(Fs,query
T × FA,key) (2)

where fnorm means Softmax operation. After that, the se-
mantic related feature Fs,sem is obtained by:

Fs,sem = FA,value ×AsimilarT + Fs (3)

The final enhanced feature F̂s is obtained by temporal re-
lated feature Fs,tem and semantic related feature Fs,sem as
Eq. 4. Just like F̂s, F̂e is obtained in the same way.

F̂s = Fs,tem + Fs,sem (4)

By concatenating F̂s and Fs, F̂e and Fe, the updated
boundary features F ′

s, F
′
e contain not only local information

but also segment contexts.

3.4. Training

Label Assignment. In order to expand the boundary from
moment to region, we define the start region and end region
as rs = [ts − 1.5d, ts +1.5d] and re = [te − 1.5d, te +1.5d].
We calculate the overlap between snippet and start/end re-
gions to get the probabilities Gs = {gis}Ti=1 and Ge =
{gje}Tj=1 as start/end labels. For anchor map, the ground truth

Gmap = {gj,imap} is generated by calculating the Intersection
over Union (IoU) between each anchor area and action area.
Loss in BSM. For the Boundary Segmentation Module, we
can obtain boundary probability sequences Ps, Pe. We use
LB to represent binary logistic loss, which is formulated as
Eq. 5. The boundary segmentation loss is defined as Eq. 6.

LB =
1

T

T∑
i=1

(α · gi · log(pi) + β · (1− gi) · log((1− pi))) (5)

Lboundary = LB(Ps, Gs) + LB(Pe, Ge) (6)

gi is converted by function sign(gi − 0.5) from [0, 1] to
{0, 1}. Denoting T+ =

∑
sign(gi − 0.5) and T− =∑

sign(0.5− gi), the α and β are defined as T
T+ and T

T− .
Loss in AEM. For the Action Evaluation Module, we can
obtain anchor classification map Mcls and anchor regression
maps Mreg . Same as LB , LMcls represents binary logistic
loss and LMreg represents L2 loss. The anchor evaluation
loss is defined as:

Lmap = LMcls(Mcls, Gmap) + LMreg(Mreg, Gmap) (7)

For calculating LMcls, signal function sign(gj,imap − 0.9) is
used to convert gj,imap from [0, 1] to {0, 1}.
Loss in BAM. In Boundary Aware Module, we can get anchor
boundary probabilities Ps,map, Pe,map from each anchor. Es-
pecially, we add anchor boundary classification loss Lmb as
intermediate supervision (Eq. 8), where Gs,map = {gj,is,map},
Ge,map = {gj,ie,map}. For each anchor, the gj,is,map equals to gis
and the gj,ie,map equals to gi+j

e . And then, Gs,map and Ge,map

are flattened to vectors.

Lmb = LB(Ps,map, Gs,map) + LB(Pe,map, Ge,map) (8)

Total loss. The total loss of the BACNet includes boundary
segmentation loss, anchor evaluation loss and anchor bound-
ary classification loss:

L = Lboundary + Lmap + Lmb + λθL2(Θ) (9)

where L2(Θ) represents L2 regularization term and λθ repre-
sents weight decay, which is set to 10−4.

3.5. Inference
We can obtain start/end probabilities Ps, Pe from BSM, and
confidence maps Mcls,Mreg from AEM. Following [1], the
boundary points pis and pi+j

e are combined into proposals
when they are local peak or their values are greater than a
threshold. Then, an action recognition model is used to gen-
erate classification score pclass for each proposal. The final
confidence score is defined as Eq. 10.

Sfinal = pis · pi+j
e ·M (j,i)

cls ·M (j,i)
reg · pclass (10)

4. EXPERIMENTS

4.1. Dataset Settings
We evaluate BACNet on two challenging datasets THUMOS-
14 and ActivityNet-1.3 [19]. THUMOS-14 has 20 labeled
action categories with temporal annotations, which consists
of 200 validation videos and 213 testing videos. An action
recognition model is used to extract feature sequence from
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untrimmed video. On THUMOS-14, we use sliding window
with the length T of 128 to cut the whole video feature se-
quence into several windows. And the maximum anchor du-
ration D is set as 64, which can cover 98% action instances.
ActivityNet-1.3 contains 19994 temporally annotated videos
with 200 action categories. For each video, we resize the
feature sequence length T to 100 using linear interpolation,
and the D is set to 100. BACNet is trained with batch size
of 16 and training epoch of 10. After running 5 epochs on
THUMOS-14 and 7 epochs on ActivityNet-1.3, we use step
scheduler to reduce the learning rate from 10−3 to 10−4 .
4.2. Comparison with State-of-the-art Methods
The input feature sequence is provided by [3] from pre-trained
two-stream network [20]. Table 1 shows the performance
comparision between BACNet and other state-of-the-art mod-
els on THUMOS-14, which reports the mAP at tIoU thresh-
olds {0.3, 0.4, 0.5, 0.6, 0.7} and average mAP. Table 2 shows
the superior performance of BACNet on ActivityNet-1.3. We
report the mAP at tIoU thresholds {0.5, 0.75, 0.95} and aver-
age mAP. Specifically, the average mAP is calculated of tIoU
threshold between 0.5 and 0.95 with the step of 0.05.

On THUMOS-14, BACNet obtains outstanding perfor-
mance. Compared with the previous best method [21], BAC-
Net gains 2.38% improvement on average mAP. More specif-
ically, the performance of BACNet at all thresholds surpasses
other methods, which demonstrates the effectiveness of our
method. On ActivityNet-1.3, in terms of mAP@0.75 and the
average mAP, BACNet outperforms all other existing meth-
ods, which verifies the predictions of BACNet are more reli-
able generally. However, the improvement on ActivityNet-1.3
is less than the improvement on THUMOS-14. The main rea-
sons may lie in two aspects. Firstly, the performance of BAC-
Net relies on the accuracy of boundaries, but in ActivityNet-
1.3, there are many daily actions whose boundaries are vague,
which undermines the performance of this dataset. Secondly,
for fair comparisons with other models, we choose the of-
fline feature as the input of BACNet. However, the fea-
ture dimension of ActivityNet-1.3 is smaller than the dimen-
sion of THUMOS-14, which means the feature expression of
ActivityNet-1.3 is weaker than THUMOS-14.
4.3. Ablation Study
To fully explore the contribution of each component in BAC-
Net, extensive ablation studies are conducted.
Total Framework. In order to further verify the effectiveness
of complementary information in BACNet, we add BAM and
AAM on the base model individually.

According to Table 3, we find the performance can be im-
proved by BAM and AAM individually. Average mAP is im-
proved by 3.10% when adding BAM alone, which verifies
the structured features of anchors produce more precise an-
chor confidence. Average mAP is improved by 3.54% when
adding AAM alone, which validates AAM brings supplemen-
tary contexts from anchors for better boundary judgement.
And the best performance appears when two modules are

combined, which shows these two modules do not conflict.
In general, experiments indicate that information exchange
between boundaries and anchors is necessary.

Table 1. The performance comparison with state-of-art meth-
ods on THUMOS-14, where the classification results are gen-
erated by [22]. Bold text indicates the best results.

Method mAP@tIoU (%)
0.3 0.4 0.5 0.6 0.7 Avg.

BSN [10] 53.50 45.00 36.90 28.40 20.00 36.76
BMN [1] 56.00 47.40 38.80 29.70 20.50 38.48
DBG [13] 57.80 49.40 39.80 30.20 21.70 39.78
PGCN [15] 63.60 57.80 49.10 - - 34.10
GTAD [3] 54.50 47.60 40.20 30.80 23.40 39.30
TSI [6] 61.00 52.10 42.60 33.20 22.40 42.26
BSN++ [2] 59.90 49.50 41.30 31.90 22.80 41.08
RTD-Net [23] 68.30 62.30 51.90 38.80 23.70 49.00
ContextLoc [16] 68.30 63.80 54.30 41.80 26.20 50.88
Anchor-free [21] 67.30 62.40 55.50 43.70 31.10 52.00
BACNet (ours) 69.62 64.16 56.35 46.54 35.21 54.38

Table 2. The performance comparison with state-of-art meth-
ods on ActivityNet-1.3, where the classification results are
generated by [24]. Bold text indicates the best results.

Method mAP@tIoU (%)
0.5 0.75 0.95 Avg.

BSN [10] 46.45 29.96 8.02 30.03
BMN [1] 50.07 34.78 8.29 33.85
PGCN [15] 48.26 33.16 3.27 31.11
GTAD [3] 50.36 34.60 9.02 34.09
TSI [6] 51.18 35.02 6.59 34.15
BSN++ [2] 51.27 35.70 8.33 34.88
RTD-Net [23] 47.21 30.68 8.61 30.83
ContextLoc [16] 56.01 35.19 3.55 34.23
Anchor-free [21] 52.40 35.30 6.50 34.40
BACNet (ours) 51.68 36.06 6.83 34.90

Table 3. Ablation study on the total framework of BACNet.
mAP@0.5 and average mAP are reported on THUMOS-14.

Method mAP@0.5 Avg. mAP
base 51.97 49.31
base + BAM 54.21 52.41
base + AAM 54.52 52.85
BACNet 56.35 54.38

BAM. To explore the contributions of structured feature con-
struction and utilization of anchors, we ablate the bound-
ary supervision and ConvLSTM respectively. As shown in
Table 4, “base + Boundary Supervision” represents anchor
features with boundary supervision, while applies traditional
convolution to aggregate the features. “base + ConvLSTM”
uses ConvLSTM to construct temporal relation with original
sampled features.

From the comparison of “base”, “base + Boundary Super-
vision” and “base + BAM”, when we only build the structured
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Table 4. Ablation study on BAM. mAP@0.5 and average
mAP are reported on THUMOS-14.

Method mAP@0.5 Avg. mAP
base 51.97 49.31
base + Boundary Supervision 51.99 50.17
base + ConvLSTM 53.03 51.08
base + BAM 54.21 52.41

Table 5. Ablation study on AAM. mAP@0.5 and average
mAP are reported on THUMOS-14.

Method mAP@0.5 Avg. mAP
base 51.97 49.31
base + Temporal Relation 53.65 51.82
base + Semantic Relation 51.05 49.65
base + AAM 54.52 52.85

features, average mAP is improved by 0.86%. Moreover,
when ConvLSTM is applied to construct temporal relation,
the performance is improved from 50.17% to 52.41%, which
promotes the performance greatly. The promotion illustrates
that constructing structured features is very important for the
anchor representation. Meanwhile, compared with traditional
convolution, ConvLSTM can make better use of the struc-
tured features, which indicates that multi-level temporal rela-
tions among anchors are significant.
AAM. To explore the impacts of temporal and semantic an-
chor features, we ablate the TRM and SRM in AAM. As
shown in Table 5, “base + Temporal Relation” and “base
+ Semantic Relation” options indicate whether the model is
equipped with Temporal Relation Module and Semantic Re-
lation Module respectively.

When comparing “base + Temporal Relation”, “base +
Semantic Relation” and “base + AAM”, we have a clear un-
derstanding of the effectiveness of the anchor contexts. The
promotion is limited when we merely add Semantic Relation
Module, but the performance of “base + AAM” is improved
significantly, which illustrates the temporal and semantic re-
lated contexts play a mutually reinforcing role in AAM.

5. CONCLUSION

In this paper, we concentrate on the complementary informa-
tion between boundary segmentation and action evaluation in
TAD task. To produce the discriminating anchor representa-
tion, we design Boundary Aware Module to construct struc-
tured representation of anchors with boundary information,
which highlights the boundary while constructing the multi-
level temporal relations within anchors. To expand the re-
ceptive field of snippets with segment information, Anchor
Aware Module is proposed to enrich local feature with tempo-
ral and semantic related anchor features. These two modules
are integrated into one framework named BACNet. Experi-
ments show that the BACNet achieves superior performance.
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